
 327A methodology for building agent-based simulations of common-pool resources ...

A methodology for building agent-based
simulations of common-pool resources
management: from a conceptual model
designed with UML to its implementa-
tion in CORMAS
C. Le Page and P. Bommel

Since 1995, our team has been developing a simulation platform called CORMAS
(common-pool resources and multi-agent systems). It provides facilities to build
and analyze agent-based models (ABMs) that represent ecosystems where vari-
ous human activities compete for the use of natural resources. Few agent-based
simulations can be mathematically proven, but they can be analyzed inductively.
It is therefore important that simulations be replicated before they are accepted as
correct. To tackle this thorny issue of ABM replication, we believe that, during the
design process, a careful representation of the conceptual model is paramount. In
this paper, we advocate using UML (unified modeling language), which is a formal
language to describe systems using the object-oriented paradigm. An archetypi-
cal agroforestry system is presented here, and serves as an example to design a
very simple model dealing with common-pool resources management. Different
types of UML diagrams are also introduced to describe the static structure of the
model, as well as that of the dynamic processes. Adaptation of these diagrams for
implementation using the CORMAS platform is detailed. Then, a simple simula-
tion scenario is presented to illustrate how it is done in CORMAS, and a sensitivity
analysis on one parameter of the model is conducted.

Common-pool resources (CPR) management involves interactions among stakehold-
ers and groups of stakeholders in using the resources. It is about decision making in
space. In the process of decision making, each individual stakeholder tries to achieve
a personal goal, and at the same time may also be constrained by some regulations
or rules established at a collective level (group or institution). As natural resources
are most often heterogeneously distributed, this will influence the actions of several
stakeholders on these resources. For instance, each user will determine strategic
places according to some specific criteria. But access rules, a key issue in CPR, may
prevent the achievement of some activities. Access rules are often related to the spa-
tial characteristics of the environment, such as slope, distance, elevation, adjacency,
connectivity, etc. Hence, it is crucial to take into account the spatial aspects of CPR
management.
 Agent-based models (ABMs) are particularly well suited to represent ecosys-
tems where contrasting human activities compete for the use of natural resources in
space. ABMs are based on the principles of multi-agent systems (MAS), a research

328 C. Le Page and P. Bommel

field in computer science focusing on distributed artificial intelligence. An agent is
a virtual entity, a computer component, such as a software (program) or a hardware
(robot), that is driven by individual objectives, capable of perceiving its surrounding
environment and capable of acting on its environment, and that can also communicate
directly with other agents (Ferber 1999).
 Using MAS to investigate how CPR can be managed is fast becoming a research
field. From a theoretical point of view, ABMs of individual decision making have
been studied (e.g., Jager et al 2000) and, recently, Deadman and Schlager (2002) have
reviewed their use in the specific context of common-pool-resource management in-
stitutions. Since 1995, the Green research unit from the French Agricultural Research
Center for International Development (CIRAD) has been developing a simulation
platform, CORMAS (common-pool resources and multi-agent systems), which views
CPR from a more generic and practical perspective (Bousquet et al 1998). Our seminal
objective was to be able to design models more easily, rapidly, and efficiently based on
interactions between natural and social dynamics in the context of CPR management.
Today, among the existing agent-oriented simulation platforms (Gilbert and Bankes
2003), CORMAS remains very open by not imposing any predefined individual de-
cision-making process on an agent, or coordination protocols between agents. This
flexibility also leaves the responsibility to describe all the details of the model to
the model designer. Moreover, according to the scientific reproducibility principle,
it should be possible for anybody with basic skills in modeling to build the model
again, to reimplement it by using any appropriate simulation toolkit (not necessarily
the one used originally), and to verify that the results obtained are the same as the
ones originally published. This is very challenging as the model becomes complex.
Today, it is one of the biggest concerns of scientists from the fields of social science,
economics, and ecology in using ABMs to simulate artificial societies or ecosystems
(Hales et al 2003).
 To ensure a rigorous description of a particular ABM, providing the source code
appears to be a necessity, but it is definitively not sufficient. In between the literal
description of a model and its implementation in a computer using a specific program-
ming language, a formal representation of the conceptual model is vital. Recently,
a standard methodology, UML (unified modeling language), has emerged (Bergenti
and Poggi 2002). Recently the Foundation for Intelligent Physical Agents (FIPA) has
even proposed a specific extension of UML toward multi-agent systems.1
 Our objective is to present a methodology for designing an ABM with COR-
MAS through a formal UML representation of the corresponding conceptual model.
A simple but complete model will help to illustrate what the UML represents and how
to run models with CORMAS. The scope of this paper is more about how to design
an ABM with CORMAS, rather than about the substance of the model. Hence, before
describing the toy-model, we will first introduce the formal concepts used in the set
of basic UML diagrams, as well as the related conventional notations. Second, we
present an archetypical model of CPR management, the slash-and-burn toy-model.
A literal description of the model is proposed, followed by the conceptualization of

1www.auml.org.

 329A methodology for building agent-based simulations of common-pool resources ...

the model using UML. Third, we present the implementation of the conceptual model
with CORMAS and propose a set of simulations.

UML overview
The “unified modeling language” (UML) is a description language, specifically a
graphic-based representation language of models. It is an open tool designed to be
independent of particular programming languages (such as Java or Smalltalk). UML
is a formal and normalized language and was accepted by the OMG (Object Manage-
ment Group) in 1997 (OMG 2003a,b). From then on, UML is the reference in terms of
object modeling: a universal language for object-oriented languages. The specifications
of the most recent official version (1.5) are available from the OMG Web site.2
 This paper is dedicated to modelers and scientists willing to build ABMs on a
framework such as CORMAS,3 Swarm,4 RePast,5 etc. Whatever the targeted plat-
form, the UML diagrams are used to explain a model and they have to be independent
from the platform and the computer language. Indeed, an ABM described with UML
is an abstract representation that gives a simplified picture of the real world. Because
UML is based on simple graphic notations, with UML diagrams, an ABM should be
understandable even by noncomputer scientists. UML can be seen as a dialogue tool
that should facilitate communication among scientists, modelers, and stakeholders.
Our goal here is not to review all the formal aspects of UML, but at least to give useful
insights for nonspecialists who may be interested in using UML to specify ABMs.

Formalizing the structure of a model using the UML class diagram
The UML class diagram is the basic building block for conceptual modeling. It shows
all the classes (or a part) and their relationships that are relevant for the purposes of
the phenomenon to be modeled. Drawing the class diagram is the first and the main
stage of the modeling process. This stage is particularly fruitful when it takes place
during a collaborative working session.
 Creating a simple and understandable class diagram can be a long and difficult
process. In practice, the first step consists of identifying the relevant real-world types
of entities and then mapping out each of them using the concept of class. A class
can be considered as a description of objects having a similar structure and similar
behavior and sharing a common semantic. Practically, a class is defined by a list of
characteristics (called “attributes”) and a list of behaviors (called “operations”). At-
tributes represent the static part while operations represent the dynamic part. A class
can also be viewed as the “generator” of the objects (called “instances” of the class).
In other words, a class describes a structural model for a set of similar objects, called
instances of this class (see Fig. 1).

2Pending issues for UML specification are available from the OMG official Web page: www.omg.org/technology/
 documents/formal/uml.htm.
3http://cormas.cirad.fr.
4http://wiki.swarm.org.
5http://repast.sourceforge.net/.

330 C. Le Page and P. Bommel

 An object encapsulates its data in order to better control any modifications.
Indeed, as seen from the outside (i.e., by the other objects), an object shows only its
external interface, which is a set of public operations. UML specifies visibility of
operations and attributes with markers before the names: “+” stands for public and
“–” for private. Mostly, an attribute is private: nobody except the object itself can
directly access its value and change it. Conversely, a public attribute can be accessed
and modified by other objects. If necessary, two corresponding accessing operations
are defined. The “reader”-accessing operation returns the value of the attribute and
the “writer”-accessing operation allows one to change the value.
 UML promotes a development process that is iterative and incremental. Ac-
cording to a standard software life cycle,6 UML proposes different types of class
diagrams. In a class diagram at the “analysis” stage, many details are omitted, such
as visibility, types of attributes and types of values returned by operations (if any),
and parameters (arguments) of operations (if any). The same diagram at the “design”
stage introduces all these details. Conventionally, the types are indicated after a colon,
and the potential arguments of operations are indicated between parentheses (see Fig.
2).
 Relationships between classes are called associations. Associations are drawn
as straight lines between the two rectangular boxes representing the classes. Usually,
an association is denoted by a verb describing its semantic. The extremities of an as-
sociation should indicate its multiplicity (an integer value or a range of integer values)
and its role (a string label) played by the related class in the context of the association.
Additional comments are shown as text strings (not enclosed in parentheses) within
a note icon directly linked to the related element to be commented.
 To make such abstract notions clearer, let us formalize with UML a pattern
commonly used in the field of renewable resources management. Imagine a portion

���

�������������
�������������

����

����������

����������

���������� ��������������������

��������������������

Fig. 1. Class and instances. The five cars on the right are the objects. Even if they are
different, they belong to the same concept, the Car class, which has two attributes
(brand and color) and one operation (move).

6The main stages of a software life cycle are (1) “analysis,” (2) “design,” (3) “implementation,” and (4) “tests and mainte-
nance.” Mostly, an analysis diagram is sufficient to describe the structure of an ABM.

 331A methodology for building agent-based simulations of common-pool resources ...

of land covered by a land cover with a biomass that grows up according to the stan-
dard logistic equation. Figure 2 shows the corresponding class diagram at the design
stage.
 Two classes are defined, LandUnit and LandCover. These two classes are con-
nected through an association semantically understandable as “a land unit is covered
by a land cover.” From a land-unit perspective, the associated land cover may be
simply called cover. This is a role played by a land cover through the eyes of a land
unit. Symmetrically, from a land-cover perspective, a land unit may be seen as a
place. By drawing the number 1 at both extremities of this association, we state that
a given land unit is covered by exactly one land cover (i.e., a land unit without land
cover makes no sense in this context), and reciprocally a given instance of land cover
is located in exactly one land unit. Figure 2 contains another example of association,
which is a bit particular as it is reflexive. Associations in UML express interactions
between agents in multi-agent systems. Reflexive associations express interactions
between similar entities. Here, the connection between any particular land unit and its
four neighbors depicts the structure of a standard “von Neumann” cellular automata
network. ABMs dealing with renewable resources management are frequently using
such a structure to represent the environment.
 In UML, “underlining attributes” means to give them a special status. An
underlined attribute corresponds to a “class variable,” whose value is specific to the
class itself and therefore will be the same for all the instances. Returning to Figure 2,
we can interpret the diagram for the LandCover class. Every instance of land cover
has a biomass, but two different instances may have two different values of biomass.
The same reasoning could not be applied for the intrinsic growth rate r and the carry-
ing capacity K (the two parameters of the logistic equation). Two different instances
of the same kind of land cover should share the same values for r and K, as if they
belonged to the LandCover “species”. Then, the growth operation will be a matter of
updating the value of the biomass instance variable, by referring to the previous value
of the biomass attribute and to the two class variables r and K. Moreover, in UML it
is possible to indicate values. In Figure 2, we can see that r is a float equal to 0.4 and
K is an integer equal to 1.
 Associations starting with a lozenge are simple associations with the special
semantic “is made of” (“is aggregated from”). The multiplicity is represented by the
symbol “1..*”, which means that a woodlot can be composed of at least one land-unit

Fig. 2. UML land-use pattern (at design stage).

���������������

����������

��������

�������������������
����������������������
���������

���������������
� �

������ ������

���������

�����������������
����������������������
�����������������

�������
����������������
�������

�����
����������������
���������������������
��������

�

332 C. Le Page and P. Bommel

instance up to any number of instances. For instance, in Figure 3, a woodlot is defined
as an aggregate of (at least one) land unit respecting a constraint: being forested. In
UML, constraints express conditions or limitations. They have to be written between
curly brackets.
 Now, let us present a quite different concept from association: generalization is
an intellectual mechanism for either refining a concept (specialization) or abstracting a
concept (generalization). This mechanism is a second abstraction level (after the notion
of class regrouping similar objects). Generalization means relating several classes that
have some properties in common to a more general “super class.” Thus, a specific class
is a specialization of a more general class. As a corollary to that, a subclass inherits
the features of its super class (attributes, operations, associations, and constraints).
However, a subclass may redefine a part of the description that it “inherits.” Figure 4
represents a hierarchy of specialization for the LandCover class.
 To better understand inheritance principles, let’s detail the Pasture class as it
appears in Figure 4. Because a pasture is a kind of land cover, it inherits one instance
variable (age) and three class variables (implantation cost, upkeep cost, and suppres-
sion cost). The values for implantation and upkeep costs are redefined. Because a
pasture is also a kind of changing cover, it is characterized by one additional instance
variable (neglected duration) and two additional class variables (transition age, whose
value is redefined, and natural succession, which is also redefined at the level of Crop
as a class association from Crop to Fallow, meaning that the next stage of a pasture
will be a new instance of fallow). Finally, because a pasture is also a kind of crop, it
has two more additional class variables (price per Kg and production per Ha), whose
values are redefined.

Depicting model dynamics
Dynamics diagrams are common mechanisms for describing system evolution over
time. In UML, several types of dynamics diagrams allow us to describe the behaviors
of the entities and their interactions. Each type provides a slightly different capabil-
ity that makes it more appropriate for certain purposes. We promote three types of
representations for specifying the dynamics aspects of an ABM: activity diagrams
(intra- or interobject dynamics), state-transition diagrams (internal dynamics of an
object), and sequence diagrams (dynamics among objects).

�������

�������

��������������

���� ����

��������

���������
���������������������
����������������������
���������

��������

����������������

Fig. 3. Example of UML aggregation. A WoodLot is made up of forested
land units. A forested land unit belongs to a WoodLot and plays the role
of a component of this WoodLot.

 333A methodology for building agent-based simulations of common-pool resources ...

 Sequence diagrams. The sequence diagram describes the sequence of messages
that are exchanged among objects over time. These exchanges are shown along the
objects’ lifelines. An object’s lifeline represents an instance of the class, that is, an
individual participant in the interaction. Arrows between the lifelines denote com-
munication between the instances. From top to bottom, the order of messages along
a lifeline is significant, as it denotes the order in which these messages will occur. A
message defines one specific kind of communication in an interaction. These commu-
nications are used to invoke an operation. In any parts of a UML sequence diagram,
conditions (called “guards,”which are enclosed by square brackets) can be used if
necessary.
 Discrete time-step schedulers (such as CORMAS) slice the time stream in
homogeneous time-steps and activate the model objects sequentially. For example,
a time-step duration can be equivalent to one year. Each year, the scheduler activates
the model entities that perform their annual activities. To explain this regular sequence
of activities, which can be interpreted as the dynamic part of a simulation scenario, a
UML sequence diagram is suitable. Figure 5 shows a very simple sequence diagram
for a model with nothing but an intrinsic dynamics of land-cover changes.

Fig. 4. Hierarchy of specializations for the LandCover class.

������

���������

���������������������
������������������

���������

���������

���
��������������������
��������������
����������������

�������������

���������
�����������������

�����������������������
�������������������
�����������������

������

������������������
�����������������

����

����������
���������������

����������

����������������������
�����������������
�����������������
����������������������
��������������

��������

������������������
�����������������������
���������������
��������������
�����������������������
����������������������

�������

������������������
����������������������
��������������
��������������
�����������������������
���������������������

�����������������

�����������������

334 C. Le Page and P. Bommel

 The scheduler sends the “evolve” message to a set of land units. The “*” char-
acter before the message name indicates that this message should be repeatedly sent
to a set of instances. When a given instance of LandUnit receives this message, it is
activated and in turn sends the “grow” message to its land cover.
 State-transition diagrams. State-transition diagrams are used to describe the
behavior of one object. They show the possible sequences of states through which
an object instance can proceed during its lifetime as it reacts to events (for example,
signals, operation invocations).
 Figure 6 displays the three states that a LandUnit can have. A transition is crossed
from one state to another when an event occurs. At this stage, the origin of this event
is unknown. It may arise from internal activities (age higher than transition age) or
from external actions (slash and burn).
 The black dot represents a pseudo-initial state. It can be omitted; it just helps to
fix the starting point to read the graph. The events are a kind of stimulus. They trigger
the transition to the next state.
 Activity diagrams. Activity diagrams are commonly called “control flow” and
“object flow” models, and they can be seen as a revision of the standard flow-chart
diagrams. The purpose of an activity diagram is to describe a set of activities by repre-
senting actions and their consequences. Actions can be described by natural language.
A transition is a relationship between two activities indicating that an instance will
enter the second activity and perform specific actions as soon as the previous activity
has ended. When several kinds of instances are involved in the set of activities to

��������������

���������� ���������� �����������

��������
����

Fig. 5. A simple example of a UML sequence diagram.

���������� ������������

������������
������

����������
�������������

������������
�������������

Fig. 6. A simple example of a UML state-transition diagram.

 335A methodology for building agent-based simulations of common-pool resources ...

be described, “swim lanes” (one per instance) delimited by vertical solid lines are
introduced. The relative ordering of the swim lanes has no semantic significance.
 The activity diagram shown in Figure 7 represents a chain of activities between
a land unit and a farmer.
 At the first stage, the farmer selects a land unit covered by fallow. When this
activity ends, a transition is fired to a “decision point” (a lozenge). According to
the guard’s value, the main activity may finish or may enter into a loop (while the
farmer’s manual labor is available and a land unit has been selected). This loop con-
sists of several activities: the farmer slashes and burns the plots (we can suppose that
this activity decreases the manual labor) and the cover of the land unit is removed
and then the farmer sows and a new crop is implanted on the land unit. At the end
of the loop, a new land unit is selected. The same activity of a farmer can be repre-
sented with another activity diagram (see following figure) that adds an “object flow”
(Fig. 8). In parallel to the sequence of activities, an instance of LandUnit, called a
“cell,” is shown through its different states.

A simplistic and archetypical model of CPR management: the “slash-and-burn” toy-
model
To manage a common resource in a sustainable way, it is often asserted, referring to
Hardin’s seminal paper about the “Tragedy of the Commons” (Hardin 1968), that
some restrictions should be imposed by an authority on individual practices. The
model presented here, called “slash and burn,” illustrates how the interrelated dynam-
ics between individual and collective representations of a renewable resource may
influence individuals reciprocally. It was inspired by a previous CORMAS model
elaborated by a geographer, J.L. Bonnefoy (Bonnefoy et al 2000, 2001).

��������������������

������������������

�����������������

���������������
�����������
����������

����������������
�������

����������

��������������

���

���������������������

Fig. 7. A simple example of a UML activity diagram.

336 C. Le Page and P. Bommel

Literal description of the “slash-and-burn” model
A virtual forest landscape is set as a square lattice made up of 50 by 50 hexagonal
LandUnits. Each LandUnit, which represents a homogeneous portion of space, may
be covered by forest or not. For any LandUnit without forest, the chance of forest
recovering is proportional to the number of neighboring LandUnits being covered
by forest.
 Some farmers are located on a given LandUnit. With each time-step, they move
from the LandUnit where they are located to a neighboring one. With a limited percep-
tion range around their location, they can perceive the neighboring forest, if there is
any. When they do not perceive any forest, they simply move randomly; otherwise,
they decide whether or not they move toward a neighboring LandUnit covered by
forest to “slash and burn” it.
 A ForestDepartment is in charge of periodically organizing (not every time-
step) a census of the forest resource by identifying, sizing, and marking patches of
contiguous LandUnits being covered by forest (called WoodLots). Marks set on the
WoodLots are about protection of the forest resource: if the size of a WoodLot is
below the authorized minimum size, it will be marked “protected.” To determine the
authorized minimum size, the ForestDepartment requests that all the farmers individu-
ally report each of their perceptions of the WoodLot’s mean size; the highest value
among all the reported values is the authorized minimum size.
 Individual farmers use a memory (with limited capacity to store) to remember the
sizes of the WoodLots they have encountered; when their memory becomes full, they
just forget about the less recent stored value. Two contrasting strategies of individual
farmers (“conformist” and “nonconformist”) are illustrated using two factors affect-
ing their decision-making process: the first factor is related to their reported value of
the minimum size—for “conformist” farmers, this will be the arithmetic average of
the recorded values; for “nonconformist” farmers, it will be the highest value from
the recorded values. The second factor is related to the way a farmer decides whether
he/she will slash and burn a perceived LandUnit covered by forest. A “conformist”
will certainly respect the protection mark set by the ForestDepartment, whereas a
“nonconformist” will refer to his/her personal computed average value—if the size

��������������������
���������������
�����������
����������

����������������
�������

����������
��������������

���

�������������
���������������

�������������
������������

�������������
�������������

Fig. 8. A simple example of a UML activity diagram with object flow.

 337A methodology for building agent-based simulations of common-pool resources ...

of the WoodLot is higher than this value, the nonconformist will decide to slash and
burn the LandUnit even if it belongs to a WoodLot marked as protected.

Conceptualization of the “slash-and-burn” model using UML
Class diagram of the model at the analysis stage. Figure 9 represents a class diagram
of the slash-and-burn model described earlier.
 The left part of the class diagram describes the spatial aspect—the landscape is
composed of two types of entities: the elementary level (LandUnit) and the aggregated
level (WoodLot). The components of a WoodLot are instances of LandUnit that are
connected and in a forest state (constraint). On the other hand, one LandUnit may
belong to a WoodLot if its state is forest. The size of a WoodLot is the number of its
components. A WoodLot can be declared protected or not.
 When deforested, a LandUnit can recover its forest according to a probability
(probaForestRecover). We assume here that this probability, equivalent to a recovery
rate, is a constant value shared by any deforested LandUnit (it is then a class vari-
able).
 The landscape is made up of 2,500 LandUnits. A comment related to this
multiplicity states that these elementary spatial entities are organized as a “50 × 50”
square spatial grid.
 A Farmer entity can be regarded as a composite entity. Indeed, farmers have
their own inner state (perception range, etc.) and inner behavior (goSlashAndBurn
or moveRandomly), but they also own a specific strategy that can change over time:
they can be conformist or nonconformist. In this particular model, “Strategy” is an
abstract class, meaning that its raison d’être is only to serve as a generalization of
the two specific strategies. “Strategy” declares two abstract methods that are refined
in both subclasses (“Conformist” and “NonConformist”). This object architecture is
called polymorphism; it allows users to specify similar behaviors but can be carried
out differently. This structure will be convenient for discriminating the two strate-
gies. For instance, to state that, for the conformist, the reported value is the arithmetic
average of the values stored in “cuttingMemory” (one of the attributes of the Farmer
class, see Figure 9), and that, for a nonconformist, it is the highest value from the one
stored in “cuttingMemory,” it is simply a matter of writing two different versions of
the same method called “reportValue.”
 Class diagram of the model at the design stage. Figure 10 represents the same
slash-and-burn model, but in a detailed design stage. In this stage, more details are
revealed, such as visibility, types of attributes, by-default values, and parameters of
operations.
 A lot of additional information is thus provided in Figure 10 compared with
Figure 9. For instance, for attributes, it is indicated that the default value for the class
variable probaForestRecover (LandUnit class) is set to 0.0025. For operations, if we
look at the Farmer class, we can note from the “+” sign that “goSlashAndBurn” and
“sendReport” are the two main behaviors available for outer use (public methods). The
other operations are for private use: – perceive():LandUnit [*]) is a private method
without argument that returns a set of LandUnits.
 The sequence diagram. The sequence diagram shows the basic order of a series
of operations in a simulation. The sequence diagram in Figure 11 shows how the

338 C. Le Page and P. Bommel

��
��

��
��

�

��
��

��
�
��

��
��

��
�

��
��

�
��
�

��
��

��
��

�

��
��

��
��

��
��

��
��

��
��

��
��
���
��

��
��

�

��
��

��
��

��
��

��
�

��
�
��

��
��

��
��

�
��
��

��
��
��

��
��

��
��

��
��

�
��

��
��

��
��
�

��
��

��
��

��
��

���
��
�

���
��

��
��

��
��

��
��
��

�
��

�
��

��
��

�
��

��

��
��

��
��

���
��

��
��

��
��

��
��

��
��
��

�

��
��
���

��
��

��
��

��
��

��

��
��

��
�

��
��

��
��

��
���
�

��
��
��
��

��
��

�
�
��

��
��

��
��
��

��
��

�
��

��
��

���
��

��
� �

�
��

��
��

��
��

��
��
��

��
��

�
��

��
�

��
��

��
��

��
��

�
��

��
� �

��
��

��
�

�
��

��
��

��
�

��
��

��
��
��

��
��
�

�
��

��
��
��

��
��

��
��

�
�
��

��
��

��
��

��
��
��

�
��

��
��

��
��
��

��
��
��

�
�

��
��
��

��
��
��

��
�

��
��

��
��

��
��

��

��
��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
��

��
�

��
�

�
��

��
��

��
�

��
�

��
��

��
��
��

��
��

��
��

��
��

��
��

��
��

�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��

��
��
��
��

��
��
��

���
��
��

��
�

��
��

��
��

��
��
�

��
��

��
��

��
��

��
��

��
��
��

�
��

��
��

��
��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

�
��
��

��
��

��
��

��
��

��
��

��
���

��
��
��
��

��
�

��
��

��
�
��

��
��

��
�

��
��

��
��
��

��
��

��

��
��

��
�
��

��
��

���
��

���
��

��
��
��
�

��
��

��
��
��

��
��

��
��

�
��

��
��

��
��
��

��

�
��

��
��

��
��

��
��

�

�
��

�
��

��

��
��

��
�

���
��

��
��

�

�

�

��
��

��
��

�

��
��

���
��

��
��
���

�
��

���
��

��
��

��
��

�

�

��
��

���
�

��
��

��
��

�
�

��
��

��
��

��
��

���
��
�

�

�

Fi
g.

 9
. U

M
L

cl
as

s
di

ag
ra

m
 o

f t
he

 “
sl

as
h-

an
d-

bu
rn

”
m

od
el

 a
t t

he
 a

na
ly

si
s

st
ag

e.

 339A methodology for building agent-based simulations of common-pool resources ...

scheduler activates the entities of the slash-and-burn model. Each year (assuming
that a time-step is equivalent to one year), the scheduler activates the LandUnits for
forest recovering, then activates the farmers to perform their annual activities and the
ForestDepartment to set the WoodLotsProtection.
 In drawing the sequence diagram, a modeler has to take note of the risk in
representing all the possible message exchanges over time; this can lead to an incom-
prehensible diagram that defeats the purpose of UML. A sequence diagram should
be restricted to the main operations that are triggering the internal behaviors of each
entity of a model, and therefore should avoid delving into any internal details of such
or such operations. Rather than producing a single but complicated sequence diagram,
a better solution would be to restrict it to its simple expression, as in Figure 11, and
to associate it with other sequence diagrams (Fig. 12) or activity diagrams (see Fig.
14).
 A specific internal periodicity of activities exists for the ForestDepartment. On
the left of the activity lifeline of the ForestDepartment, a guard condition (between
square brackets) depicts this specific periodicity.

Fig. 10. UML class diagram of the
“slash-and-burn” model at the design
stage. ���������������������������������

����������������������
���������������������������������
����������������������

���������� �������������

���������������������������������
����������������������

��������

����������������

����

�������

�

�

�����������������
�������������
����������������
����������������
�������������
��������������������
����������������������������
��������������������������

�������������������������������������
���������������������
������������������������������
�����������������������
������������������������

������

������������ �
�����

����������������

���������

�����������������

���������

����

���������������������
�����������������
����������������
����������������������
�������������������������

���
������������������

�
�����������

�����������������

����

����� ��������������������
�����������������������

������������������������������
������������������

��������� ����������� ����������������������

����� ����

�����������������

�

�������

��������

�����������������������������

��������������
�������������������������
���������������������������

� ����������������

����������������

����������������������
�������������������������
�������������������������������
����������������������������

�

�������������

�������������������������������
������������������������

340 C. Le Page and P. Bommel

������������������������

������������������

�����������������

���������� �������� �������������������������������

������������������

Fig. 11. UML sequence diagram of the main step of the scenario
defined in the “slash-and-burn” model.

 The WoodLots can be considered as a reification of a point of view. They are
the minimum spatial unit in the eyes of the ForestDepartment. Unlike the LandUnits,
which are created during model initialization, some WoodLots can also be created
during the run time. To have a reference on them, the ForestDepartment asks the
Landscape to identify them, which means creating new WoodLots from the LandUnits
according to the constraint {forest & connected}. “getWoodLots()” is the only public
operation of the Landscape class (see Fig. 9).
 State-transition diagram. Figure 13, a statechart, displays the two states that a
LandUnit can have. The transitions come about because of events that are launched
by internal activities (forestRecovering) or external actions (cut).
 Activity diagram. The diagram shown in Figure 14 is the activity diagram of the
“setWoodLotsProtection” method from the ForestDepartment class. The ForestDepart-
ment sets protection for the WoodLots after comparing their size with the minimum
authorized size. This threshold is updated through a request sent to the Farmers.
 What is described in Figure 14 is somehow redundant with the details given in
Figure 12. It is another way to represent the activity of the ForestDepartment.

Implementation of the “slash-and-burn” model in CORMAS
CORMAS overview
CORMAS provides a guide in building ABMs through its interface. It offers some
facilities to incorporate data coming from geographic information systems (GIS) in
order to define and describe “spatial entities.” Neighboring interactions among these
“spatial entities” can represent natural dynamic processes (i.e., vegetation dynamics,
erosion, pollutant diffusion); this is equivalent to a cellular automata layer. CORMAS
also facilitates the design of “social entities” (the “agents”) representing the key
stakeholders of the system under study. There is a set of predefined mechanisms for
the location, perception, and movement of the agents, as well as for direct communica-
tion between them. Additionally, CORMAS has some tools to define specific markers
(probes) to analyze simulation results, as well as viewpoints to allow visualization
of the simulation from a particular perspective. It also provides a sensitivity analysis
module to run sets of simulation experiments that automatically increases the values

 341A methodology for building agent-based simulations of common-pool resources ...

������������������� �������� ����������� ������������

��������������

�������������

�����

�����������������������������������

�������������

���������

��

���������������
��������������
������������

�������������������
���������������������

����������� ����������������

���

��������������������
������������
���������������������������

�������������������

�����������

���������������������������

����������

�����������

�����������������
�����������������

���������������������
�����������������

�����������
���������������������������

������������ ����������� ��������������������� ��������

Fig. 12. UML sequence diagram of ForestDepartment’s main step: setWoodLotsProtection.

Fig. 13. UML state-transition diagram of the LandUnit
class of the “slash-and-burn” model.

Fig. 14. Activity diagram of setWoodLotsProtection method from the ForestDepartment class of
the “slash-and-burn” model.

342 C. Le Page and P. Bommel

of parameters within a given range. Finally, CORMAS allows exporting of the data
produced by the simulation into spreadsheet or database software.
 The CORMAS simulation toolkit is being developed continuously, through
a step-by-step enriching process, by selecting what is of general interest in specific
models and by “pushing it up” at the generic level. CORMAS comes with a library
of existing models that can be divided into three categories: didactic models7 to il-
lustrate the main concepts and principles of ABMs, theoretical models8 to investigate
by simulation the field of theory building, and models oriented toward real-world case
studies (Bousquet et al 2001) to better understand complex environments. Simple
“quick and dirty” models, collectively designed with stakeholders through role-play-
ing games, are also developed with CORMAS to support collective decision-making
processes in complex situations (D’Aquino et al 2003). Stakeholders learn collectively
by creating, modifying, and observing simulations. In such situations, CORMAS
proved to be very convenient in allowing the integration of run-time modifications
or new features suggested by the participants.

Adjusting the conceptual model to the CORMAS simulation platform
Starting from the class diagram of the model at the design stage (see Fig. 10), a new
class diagram has to be designed to fit the particularities of the software that will be
used. We thus adapt this first description of the slash-and-burn model to the CORMAS
simulation framework. The idea is to use the generic CORMAS elements (classes
with attributes and methods that already exist) as much as possible. A class diagram
of the CORMAS Entity package is available at the CORMAS Web site.9 By taking
advantage of inheritance from suitable generic spatial, social, and passive entities, some
attributes and methods needed by the particular entities of the model are handled by
reusing those existing at the more general level of the corresponding superclasses.
 Figure 15 presents the class diagram of the “slash-and-burn” model adapted to
fit the framework proposed by CORMAS.
 The WoodLot class is set as a specialization of SpatialEntityAggregate. The
LandUnit class is set as a subclass of SpatialEntityElement, which represents the
smallest spatial entity (minimum granularity level) in CORMAS. To account for the
concept of Landscape, we refer to the generic class called SpaceModel in CORMAS,
which allows us to create and to refer to all the spatial entities. ForestDepartment is
set as a kind of Agent, and Farmer is a specialization of AgentLocation, which is a
kind of Agent located on a SpatialEntityElement in CORMAS.
 A new class, denoted SlashAndBurn, now appears in the UML class diagram
represented in Figure 15. This class is devoted to the design of simulation scenarios.
In CORMAS, such a control level is specified through two roles: the first role is to
create the initial situations for the simulation experiments, and the second role is to
schedule the simulation experiments. The initialization process consists of creating
and initializing all the instances from the classes corresponding to the conceptual enti-
ties of the model at time 0. Once created and initialized, these instances are stored in

7See, for instance, http://cormas.cirad.fr/en/applica/plotsrental.htm.
8See, for instance, http://cormas.cirad.fr/en/applica/ecec.htm.
9http://cormas.cirad.fr/en/outil/uml-kernel.htm.

 343A methodology for building agent-based simulations of common-pool resources ...

��
��

��
��

��
��
��

��
��

�
��

��
��

��
��

��
��
��
��

�
��

��
��

��
��
��

��
��

��
��

��
��

��
��

��
��

��
�
��

��
��

��
�

��
��

�
��

��
��

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
���

��
�

��
��

��
��

��
�

��
��

��
��

��
��

��
��
��

�
��

��
��

��
��
��

��
��

��
��

��
��

��
��

�

��
��
��
�

��
��

��
�

��
��

��
��

��
��

��
�

��
��
��
��

��
��
��
��

��
��

��
��

�
��

�
�
��

��
��

��
��

��
��
��

��

��
��

�
��

��
��

�

��
��
��
��

��
��

��
��

�

���
��

�
��

��
��

��
��

��
�

��
��

��
��

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��
��

��
�

��
��

��
�
��

��
��

��
�

��
��
��

��
��

��
��

��
��

�
��

��
��

���
��
��

��
�� ��
��

��
��

�
��
��

��
��

��
��

��
�
��

��
��

��
��
��

��
��

�
��
�

��
��

���
��

� �
��
��
�

��
��
��

��
��

�
��

��
�

��
��

��
��

��
��

�
��

��
��

��
��

��
�

��
��
��

��
��
�

�
��

��
��
��

��
��

��
��

�
�
��

��
��

��
��

��
��
��

�

��
��

��
�

��
��

��
��

��
���
�

��
��
��
��

��
��

�
�
��

��
��

��
��
��

��
��

�
��

��
��

���
��

��
� �

�
��

��
��

��
��

��
��

��

��
��
��

�
��

��
��

��
��

��
� �

��
�

��
��

��
�

��
�

�
��

��
��

��
�

��
�

��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��
��

��
��

��
��

��
��

��
��

� �
��

��
��

�

��
��

��
��

�

��
��

��
��

��
�

��
��

��
��

��
�

��
���

�

�

��
��

���
��

��
��

�

��
��

��
�

��
��
���

��
��

��
��

��
��

�
��

��
��

��

��
��
��

���
��

�
�

��
��

��
�

��
��

��
�
��
��
�

��
��

��
��

��
��
�

��
��

�

��
��

���
��

��
��

��
��

��
��
�

��
��

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��
��

���
��
��

��
�

��
��

��
��
��

���
��

��
��

��
�

��
��
��

��
��

��
�

��
��
��

��
��
��

��
��

��
�

��
��

��
��

�
��

�
��

��
�

��
��

��
�

��
��

�
��

��
��

��
��

�

��
��

��
��

��
��

��
��

��
�

��
���

��
��

��

��
��

��
��

��
��

��
���

��
��

���
��

�

��
��

��
��

��
��

��
�

�

��
��

��
��
��

���
��

��
��

��
��

��
�

��
��

��

�

�

��
��

�
��

��
��

�

�

Fi
g.

 1
5.

 U
M

L
cl

as
s

di
ag

ra
m

 o
f t

he
 “

sl
as

h-
an

d-
bu

rn
”

m
od

el
 a

da
pt

ed
 to

 th
e

CO
R

M
AS

 s
im

ul
at

io
n

to
ol

ki
t.

344 C. Le Page and P. Bommel

collections that are automatically created as attributes of the SlashAndBurn class. In
Figure 15, these collections appear as the roles called “theLandUnits,” “theWoodLots,”
“theForestDepartments,” and “theFarmers.”
 Now that we have a CORMAS superclass associated with each specific class of
the SlashAndBurn model, not only attributes and methods of superclasses are directly
reuseable, but also associations between superclasses. For clarity, or just to emphasize
important relationships, it may be convenient to “refine” such associations, which is
a way to name them with a semantic adapted to the topic of the model. To signal this
kind of refinement, we propose here to use one of the existing UML stereotypes: a
symbol “//” that crosses the subassociation. For clarity, in Figure 14, we also shaded
these associations dark gray. Hence, for instance, the aggregative association between
the CORMAS classes SpatialEntityAggregate and SpatialEntity is refined to stress
the importance of the aggregative association between the WoodLot and LandUnit
classes.

Implementing the conceptual model within CORMAS
This paper does not discuss all the details of model implementation in CORMAS.
The whole code of the model can be downloaded from the CORMAS Web site.10 To
illustrate the translation of UML diagrams into the Smalltalk language that is used
in CORMAS, we cite here the main method for the ForestDepartment class as an
example. The corresponding UML activity diagram is shown in Figure 14. It is about
the process of marking the WoodLots protected or not:

setWoodLotsProtection

 “updates the Minimal Authorized Size and sets the ‘protected’ attribute of the woodlots to ‘true’

 if its size is below this threshold”

 ((Cormas timeStep \\ self periodicity) = 0) ifTrue: [

 self updateMinimalAuthorizedSize.

 self theWoodlots do: [:aWoodlot |

 aWoodlot protected: aWoodlot size < self minimalAuthorizedSize]]

 To gain access to the WoodLots, the ForestDepartment requests the Landscape
to perform the aggregation. In CORMAS, the SpaceModel class (which was used here
to represent the concept of Landscape) is equipped with a set of generic aggregation
methods. One of these generic methods (setAggregate:from:verifying:) is used here
(see the code below):
 theWoodLots

 “Request the Landscape to perform the WoodLots aggregation”

 “then get the updated collection of WoodLots”

 self landscape

 setAggregates: WoodLot

 from: LandUnit

 verifying: [:c | c forest].

 ^self landscape spatialEntities at: #WoodLot

 10http://cormas.cirad.fr/en/applica/SlashAndBurn.htm.

 345A methodology for building agent-based simulations of common-pool resources ...

A simple simulation scenario
To be able to run a simulation experiment, a “scenario” has to be specified. With
CORMAS, the scheduling process is based on discrete time-steps. In contrast to
events-driven schedulers that activate the agents when given events occur, a discrete
time-steps scheduler activates the existing instances of the model on a regular basis.
In the SlashAndBurn model, the time-step duration is equivalent to one year. Each
year, as is summarized in the sequence diagram shown in Figure 11, the scheduler
activates the land units for forest recovering, then activates the farmers to perform
their annual activities, and, finally, but only every 10 years, the ForestDepartment
performs its activity. We decided arbitrarily to use the value 10 for the specific internal
periodicity of activities of the ForestDepartment. This choice is denoted in the UML
class diagram at the design stage (see in Figure 9 “periodicity” in the definition of
the ForestDepartment class).
 This is only half of what is called a “scenario.” We also need to define an initial
situation; this means creating the desired number of entities, and assigning initial
values to all the attributes of each entity. With CORMAS, it is possible to load the
initial values of the attributes of elementary spatial entities directly from an ASCII
file.
 The other initial values are given directly in the UML class diagram at the de-
sign stage (see Fig. 9). One additional parameter is used to initialize the population
of farmers: the total number of farmers, which here is a constant arbitrary number
set at 40. This parameter could have been set as an attribute of a conceptual entity
“Population,” but it does not make sense for this particular model. Because 40 is
related only to the initial instantiation of the farmers, it is defined as a characteristic
of the slash-and-burn model itself. The initial spatial distribution of the population
of farmers also needs to be specified. In this case of simple simulation scenario, each
farmer is randomly located on one of the 2,500 LandUnits.

Using markers (probes) to compare scenarios
Markers do not necessarily belong to the model itself unless they are used internally
by any particular entity as criteria for a decision-making process. Markers may also
be considered as external viewpoints established by anyone who examines the
simulation with specific appraisal criteria. CORMAS provides facilities to employ
such markers. The designer of the model has to write “probes,” which are Smalltalk
methods that return the values that are automatically recorded by CORMAS at the
end of each simulation time-step. The user may choose to export these data or to plot
them as time-series within CORMAS. The three markers used in this case to compare
scenarios are the number of forested LandUnits, the number of WoodLots, and the
WoodLots’ mean size.

Measuring model sensitivity
To test the variability of the results when some randomness is incorporated into the
model (random numbers are typically used to break ties among equivalent possibili-
ties), it is necessary to repeat the same simulation experiment. To be able to perform a
statistical analysis, a reasonable number of replications (at least 30) should be done.

346 C. Le Page and P. Bommel

 The scenario builder of CORMAS proposes to select the parameters whose
sensitivity is tested automatically. For each of these parameters, a range of values and
a step of variation are given.
 We propose here to test the probability of one farmer being conformist. Being
equal to 0 means that all 40 farmers are behaving according to the nonconformist
strategy; on the other hand, being equal to 1 means that all 40 farmers are behaving
according to the conformist strategy. If we let this parameter range from 0 to 1, with
a step of variation of 0.25, it defines five different simulation experiments; as it is to
be repeated 30 times, this makes a total of 150 simulation runs.

Results
How many time-steps should we run in the model? This question is often crucial when
some of the underlying assumptions become unrealistic in the long term. With this
toy-model, we decided to run 300 time-steps for each simulation experiment, mainly
because then the landscape evolution has converged toward a stabilized situation.
 Rather than producing crudely the 30 time-series for the three markers for the
five simulation experiments, we present here the average and standard deviation
values calculated at the final time-step (t = 300) from the 30 repetitions (see Fig. 16).
By doing this, we can discuss the effects of the proportion of conformist farmers in
terms of final states, but not in terms of trajectories.
 These results suggest the existence of an exponential relationship between the
proportion of conformists and the number of forested LandUnits (Fig. 16A), and a
sigmoid relationship between the proportion of conformists and the number of Wood-
Lots (Fig. 16B). On the other hand, it seems impossible to detect any clear relation-
ship between the proportion of conformists and the WoodLots’ mean size (Fig. 16C),
although, when the population of farmers is made up exclusively of conformists, the
WoodLots are twice as big as when there are some nonconformists.
 We will not discuss much here about the significance of such relationships. We
can simply note that the first marker (number of forested land units) is somehow a
combination of the two others (number of WoodLots and WoodLots’ mean size). By
just assessing the “ecological impact” of the farmers’ strategy by looking at the num-
ber of forested land units, and/or by looking at the number of WoodLots, we can talk
about a “gradual positive impact” of the proportion of conformist farmers. Actually,
as soon as there are some nonconformist farmers in the population, the WoodLots’
mean size does not increase.

Conclusions
We presented a model prototype and the main stages of its design—from a literal
description of the context to a set of UML diagrams describing its structure and
dynamics, up to its implementation and some simulation results. This highlights the
development of the static model and its evolution from the “analysis stage” up to its
adaptation into the CORMAS framework. Indeed, ABMs are often considered as black
boxes containing hidden strange behaviors. Some simulation outputs may come from
bugs or from biases that lower our confidence in the simulation results. To improve
this situation, we emphasize three crucial points.

 347A methodology for building agent-based simulations of common-pool resources ...

 The model structure should be described from scratch, without reference
to any simulation software. Description of a model should be sufficiently clear to
implement it on any platform. A static or dynamic UML diagram should be as clear
and simple as possible, and at the same time without missing crucial information.
Because the UML formalisms contain only a few meaningful elements, notations
should be strictly respected to obtain the essence of a model without ambiguity.The
UML diagrams and textual documents should be considered as the “real” model; the
model’s translation into computer code has to be seen as just one implementation. A
single model description should be enough to get the same results when replications
are run on various platforms. “A result that is reproduced many times by different

��

��

��

�

�

��

��

��

��

�

���

���

���

���

���

���

�

�������������������������

������������������

�������������������

�������������������������
� ���� ���� ���� �

���� ����

����

����

�����

����
����

�����

�����

�����

������

������

�����
����������

Fig. 16. Average and standard deviation values for (A) the number of
forested land units, (B) the number of WoodLots, and (C) the WoodLots’
mean size for increasing values of the proportion of conformists within
the population of 40 farmers.

348 C. Le Page and P. Bommel

modelers, reimplemented on several platforms in different places should be more
reliable,” according to Hales et al (2003). The benefit of designing conceptual models
before rushing to implementation is not only a matter of enabling replicability. Fol-
lowing Heemskerk et al (2003), we believe that conceptual models are efficient tools
to foster collaborative work between ecologists and social scientists. Modeling with
UML does not mean that the model is well designed!
 From an epistemological point of view, as stated by Popper, a UML model, like
any other model, should be refutable (Popper 1985). Although never completely attain-
ing formal proof, we can become more confident of a model over time by inductively
analyzing the simulation results through sensitivity study. Designing and coding a
model is only half of the work. Evaluating a model by means of sensitivity analysis
is the other half of the modeling process. It may lead to modifications of the model,
when new questions come up. This dynamic loop nurtures a learning process.

References
Bergenti F, Poggi A. 2002. Supporting agent-oriented modelling with UML. Int. J. Softw.

Engin. Knowl. Engin. 12(6):605-618.
Bonnefoy JL, Le Page C, Rouchier J, Bousquet F. 2000. Modelling spatial practices and social

representations of space using multi-agents. In: Ballot G, Weisbuch G, editors. Applica-
tion of simulation to social science. Paris (France): Hermès. p 155-168.

Bonnefoy JL, Bousquet F, Rouchier J. 2001. Modélisation d’une interaction individus, espace,
société par les systèmes multi-agents: pâture en forêt virtuelle. L’Espace Géograph.
1-2001:13-25.

Bousquet F, Bakam I, Proton H, Le Page C. 1998. CORMAS: common-pool resources and
multi-agent systems. In: Pasqual del Pobil A, Mira J, Ali M, editors. International Con-
ference on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, Benicasim (Spain). Berlin (Germany): Springer-Verlag. p 826-837.

Bousquet F, Le Page C, Bakam I, Takforyan A. 2001. Multiagent simulations of hunting wild
meat in a village in eastern Cameroon. Ecol. Mod. 138:331-346.

D’Aquino P, Le Page C, Bousquet F, Bah A. 2003. Using self-designed role-playing games
and a multi-agent system to empower a local decision-making process for land use
management: the SelfCormas experiment in Senegal. J. Artif Soc. Social Simul 6(3).
http://jasss.soc.surrey.ac.uk/6/3/5.html.

Deadman PJ, Schlager E. 2002. Models of individual decision making in agent-based simulation
of common-pool-resource management institutions. In: Gimblett HR, editor. Integrating
geographic information systems and agent-based modeling techniques for simulating
social and ecological processes. Santa Fe Institute Studies on the Sciences of Complex-
ity, Oxford University Press. p 137-169.

Ferber J. 1999. Multi-agent systems: an introduction to distributed artificial intelligence. Read-
ing, Mass. (USA): Addison-Wesley. 509 p.

Gilbert N, Bankes S. 2003. Platforms and methods for agent-based modelling. Proc. Natl. Acad.
Sci. USA 99(3):7197-7198.

Hales D, Rouchier J, Edmonds B. 2003. Model-to-model analysis. J. Artific. Soc. Social Simul.
6(4). http://jasss.soc.surrey.ac.uk/6/4/5.html.

Hardin G. 1968. The tragedy of the commons. Science 162(1968):1243-1248.
Heemskerk M, Wilson K, Pavao-Zuckerman M. 2003. Conceptual models as tools for commu-

nication across disciplines. Conserv. Ecol. 7(3):8. www.consecol.org/vol7/iss3/art8.

 349A methodology for building agent-based simulations of common-pool resources ...

Jager W, Janssen M, De Vries HJM, De Greef J, Vlek CAJ. 2000. Behaviour in commons
dilemmas: Homo Economicus and Homo Psychologicus in an ecological-economic
model. Ecol. Econ. 35(3):357-379.

OMG. 2003a. Unified modeling language specification. March 2003 Version 1.5.
OMG. 2003b. UML 2.0 Superstructure specification. Final adopted specification. August

2003.
Popper KR. 1985. Conjectures et réfutations: la croissance du savoir scientifique. Paris (France):

Payot.

Notes
Authors’ address: 467 593 827. CIRAD – TERA, TA 60/15, 34398 Montpellier Cedex 5, France,

{bommel}{le_page}@cirad.fr, phone: +33 467 593 839, fax: +33 467 593 827.

